Light combat brigades could be fielded by 2015 as part of the U.S. Army Brigade Modernization Plan. The Armed Robotic Vehicle-Assault (Light) (ARV-A-L) currently in development, could be ready for operation by 2014 and is currently planned for delivery to the first brigades by the years 2014-2015.
According to Lt. Colonel Jay Ferriera, Product Manager Unmanned Ground Vehicles, a key system for the ARV-A-L is the Autonomous Navigation System (ANS) being developed by General Dynamics Robotics Systems. ANS is scheduled to be ready for Integrated Qualification Testing on these robotic vehicles in 2012, anticipating initial operational capability with an airborne, air-assualt or light brigade by 2014.
Featuring an integrated weapons and reconnaissance, surveillance, and target acquisition (RSTA) package the ARV-A-L (designated XM1219) will support the dismounted infantry’s efforts to locate and destroy enemy platforms and positions. This robotic platform will support both anti-tank and anti-personnel weapons systems that to be remotely operated by network linked soldiers.
The 2.5 ton ARV-A-L will be sling-loadable under military rotorcraft. Its chassis is designed as the Common Mobility Platform (CMP) – a common chassis shared by different robotic vehicles developed under Multifunction Utility/Logistics and Equipment (MULE) program which has not survived the wave of cancellations that followed the termination of FCS.
Three larger unmanned combat vehicles were part of the FCS concept from its inception, but these combat capable robots were eliminated from the program in early 2007, in an attempt to save over $3 billion getting the program back on track. Setting the ARV aside for a while may have saved this vehicle, as it was developed ‘in the background’, and could be brought forward after the entire program collapsed. ARV-A-L is currently part of Capability Package 14-15, which will begin fielding in 2015. The CMP will provides superior mobility built around advanced propulsion and articulated suspension system rendering unique combat advantages, like extreme offroad mobility, and negotiation of complex terrain, cross obstacles and gaps that a dismounted BCT squad will encounter.
The CMP uses a 6×6 independent articulated suspension, coupled with in-hub motors powering each wheel. This design has proved to offer supperior performance, far exceeding that of vehicles utilizing more conventional suspension systems. The vehicle will be capable of climb at least a 1-meter step, far exceeding requirements, and provides the vehicle with the mobility performance and surefootedness required to safely follow dismounted troops over rough terrain, through rock and debris fields and over urban rubble. This technology also allows the ARV-A-L to cross 1-meter gaps, traverse side slopes greater than 40 percent, ford water to depths over 0.5 meters and overpass obstacles as high as 0.5 meters, while compensating for varying payload weights and center of gravity locations.
Optionally driven vehicles will also become reality by the second half of this decade. Future infantry vehicles like the Ground Combat Vehicle (GCV) will eventually be operated by the squad it transports, without committing additional crewmen – driver, commander and gunner. The vehicle’s systems could be operated from inside the vehicle or by a dismounted team members via remote controls. However, this vision is not het hammered into the current GCV plan or schedule awaiting further maturation of the ANS or comparable technologies.